This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a restriction to A is a subset of A and the base set B of the original structure. (Contributed by SN, 10-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressbas.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
| ressbas.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| Assertion | ressbasssg | ⊢ ( Base ‘ 𝑅 ) ⊆ ( 𝐴 ∩ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
| 2 | ressbas.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 3 | 1 2 | ressbas | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ 𝐵 ) = ( Base ‘ 𝑅 ) ) |
| 4 | ssid | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ 𝐵 ) | |
| 5 | 3 4 | eqsstrrdi | ⊢ ( 𝐴 ∈ V → ( Base ‘ 𝑅 ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 6 | reldmress | ⊢ Rel dom ↾s | |
| 7 | 6 | ovprc2 | ⊢ ( ¬ 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) = ∅ ) |
| 8 | 1 7 | eqtrid | ⊢ ( ¬ 𝐴 ∈ V → 𝑅 = ∅ ) |
| 9 | 8 | fveq2d | ⊢ ( ¬ 𝐴 ∈ V → ( Base ‘ 𝑅 ) = ( Base ‘ ∅ ) ) |
| 10 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 11 | 0ss | ⊢ ∅ ⊆ ( 𝐴 ∩ 𝐵 ) | |
| 12 | 10 11 | eqsstrri | ⊢ ( Base ‘ ∅ ) ⊆ ( 𝐴 ∩ 𝐵 ) |
| 13 | 9 12 | eqsstrdi | ⊢ ( ¬ 𝐴 ∈ V → ( Base ‘ 𝑅 ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 14 | 5 13 | pm2.61i | ⊢ ( Base ‘ 𝑅 ) ⊆ ( 𝐴 ∩ 𝐵 ) |