This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resmptf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| resmptf.b | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | resmptf | ⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐵 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmptf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | resmptf.b | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | resmpt | ⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↾ 𝐵 ) = ( 𝑦 ∈ 𝐵 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 5 | nfcv | ⊢ Ⅎ 𝑦 𝐶 | |
| 6 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 | |
| 7 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) | |
| 8 | 1 4 5 6 7 | cbvmptf | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 9 | 8 | reseq1i | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐵 ) = ( ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↾ 𝐵 ) |
| 10 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 11 | 2 10 5 6 7 | cbvmptf | ⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 12 | 3 9 11 | 3eqtr4g | ⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐵 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |