This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resoprab2 | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) → ( { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } ↾ ( 𝐶 × 𝐷 ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resoprab | ⊢ ( { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } ↾ ( 𝐶 × 𝐷 ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) } | |
| 2 | anass | ⊢ ( ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) ) | |
| 3 | an4 | ⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐵 ) ) ) | |
| 4 | ssel | ⊢ ( 𝐶 ⊆ 𝐴 → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) ) | |
| 5 | 4 | pm4.71d | ⊢ ( 𝐶 ⊆ 𝐴 → ( 𝑥 ∈ 𝐶 ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 6 | 5 | bicomd | ⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ↔ 𝑥 ∈ 𝐶 ) ) |
| 7 | ssel | ⊢ ( 𝐷 ⊆ 𝐵 → ( 𝑦 ∈ 𝐷 → 𝑦 ∈ 𝐵 ) ) | |
| 8 | 7 | pm4.71d | ⊢ ( 𝐷 ⊆ 𝐵 → ( 𝑦 ∈ 𝐷 ↔ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 9 | 8 | bicomd | ⊢ ( 𝐷 ⊆ 𝐵 → ( ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐵 ) ↔ 𝑦 ∈ 𝐷 ) ) |
| 10 | 6 9 | bi2anan9 | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 11 | 3 10 | bitrid | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 12 | 11 | anbi1d | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) → ( ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) ) ) |
| 13 | 2 12 | bitr3id | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) ↔ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) ) ) |
| 14 | 13 | oprabbidv | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) } ) |
| 15 | 1 14 | eqtrid | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) → ( { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } ↾ ( 𝐶 × 𝐷 ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) } ) |