This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resiun2 | ⊢ ( 𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↾ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | ⊢ ( 𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( 𝐶 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 × V ) ) | |
| 2 | df-res | ⊢ ( 𝐶 ↾ 𝐵 ) = ( 𝐶 ∩ ( 𝐵 × V ) ) | |
| 3 | 2 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐶 ↾ 𝐵 ) = ( 𝐶 ∩ ( 𝐵 × V ) ) ) |
| 4 | 3 | iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↾ 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( 𝐶 ∩ ( 𝐵 × V ) ) |
| 5 | xpiundir | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 × V ) = ∪ 𝑥 ∈ 𝐴 ( 𝐵 × V ) | |
| 6 | 5 | ineq2i | ⊢ ( 𝐶 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 × V ) ) = ( 𝐶 ∩ ∪ 𝑥 ∈ 𝐴 ( 𝐵 × V ) ) |
| 7 | iunin2 | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ∩ ( 𝐵 × V ) ) = ( 𝐶 ∩ ∪ 𝑥 ∈ 𝐴 ( 𝐵 × V ) ) | |
| 8 | 6 7 | eqtr4i | ⊢ ( 𝐶 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 × V ) ) = ∪ 𝑥 ∈ 𝐴 ( 𝐶 ∩ ( 𝐵 × V ) ) |
| 9 | 4 8 | eqtr4i | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↾ 𝐵 ) = ( 𝐶 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 × V ) ) |
| 10 | 1 9 | eqtr4i | ⊢ ( 𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↾ 𝐵 ) |