This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008) (Revised by AV, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resgrpplusfrn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| resgrpplusfrn.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | ||
| resgrpplusfrn.o | ⊢ 𝐹 = ( +𝑓 ‘ 𝐻 ) | ||
| Assertion | resgrpplusfrn | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 = ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resgrpplusfrn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | resgrpplusfrn.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 3 | resgrpplusfrn.o | ⊢ 𝐹 = ( +𝑓 ‘ 𝐻 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 5 | 4 3 | grpplusfo | ⊢ ( 𝐻 ∈ Grp → 𝐹 : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) –onto→ ( Base ‘ 𝐻 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → 𝐹 : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) –onto→ ( Base ‘ 𝐻 ) ) |
| 7 | eqidd | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → 𝐹 = 𝐹 ) | |
| 8 | 2 1 | ressbas2 | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 10 | 9 | sqxpeqd | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑆 × 𝑆 ) = ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) |
| 11 | 7 10 9 | foeq123d | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐹 : ( 𝑆 × 𝑆 ) –onto→ 𝑆 ↔ 𝐹 : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) –onto→ ( Base ‘ 𝐻 ) ) ) |
| 12 | 6 11 | mpbird | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → 𝐹 : ( 𝑆 × 𝑆 ) –onto→ 𝑆 ) |
| 13 | forn | ⊢ ( 𝐹 : ( 𝑆 × 𝑆 ) –onto→ 𝑆 → ran 𝐹 = 𝑆 ) | |
| 14 | 13 | eqcomd | ⊢ ( 𝐹 : ( 𝑆 × 𝑆 ) –onto→ 𝑆 → 𝑆 = ran 𝐹 ) |
| 15 | 12 14 | syl | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 = ran 𝐹 ) |