This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008) (Revised by AV, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resgrpplusfrn.b | |- B = ( Base ` G ) |
|
| resgrpplusfrn.h | |- H = ( G |`s S ) |
||
| resgrpplusfrn.o | |- F = ( +f ` H ) |
||
| Assertion | resgrpplusfrn | |- ( ( H e. Grp /\ S C_ B ) -> S = ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resgrpplusfrn.b | |- B = ( Base ` G ) |
|
| 2 | resgrpplusfrn.h | |- H = ( G |`s S ) |
|
| 3 | resgrpplusfrn.o | |- F = ( +f ` H ) |
|
| 4 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 5 | 4 3 | grpplusfo | |- ( H e. Grp -> F : ( ( Base ` H ) X. ( Base ` H ) ) -onto-> ( Base ` H ) ) |
| 6 | 5 | adantr | |- ( ( H e. Grp /\ S C_ B ) -> F : ( ( Base ` H ) X. ( Base ` H ) ) -onto-> ( Base ` H ) ) |
| 7 | eqidd | |- ( ( H e. Grp /\ S C_ B ) -> F = F ) |
|
| 8 | 2 1 | ressbas2 | |- ( S C_ B -> S = ( Base ` H ) ) |
| 9 | 8 | adantl | |- ( ( H e. Grp /\ S C_ B ) -> S = ( Base ` H ) ) |
| 10 | 9 | sqxpeqd | |- ( ( H e. Grp /\ S C_ B ) -> ( S X. S ) = ( ( Base ` H ) X. ( Base ` H ) ) ) |
| 11 | 7 10 9 | foeq123d | |- ( ( H e. Grp /\ S C_ B ) -> ( F : ( S X. S ) -onto-> S <-> F : ( ( Base ` H ) X. ( Base ` H ) ) -onto-> ( Base ` H ) ) ) |
| 12 | 6 11 | mpbird | |- ( ( H e. Grp /\ S C_ B ) -> F : ( S X. S ) -onto-> S ) |
| 13 | forn | |- ( F : ( S X. S ) -onto-> S -> ran F = S ) |
|
| 14 | 13 | eqcomd | |- ( F : ( S X. S ) -onto-> S -> S = ran F ) |
| 15 | 12 14 | syl | |- ( ( H e. Grp /\ S C_ B ) -> S = ran F ) |