This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resfifsupp.f | ⊢ ( 𝜑 → Fun 𝐹 ) | |
| resfifsupp.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | ||
| resfifsupp.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| Assertion | resfifsupp | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑋 ) finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfifsupp.f | ⊢ ( 𝜑 → Fun 𝐹 ) | |
| 2 | resfifsupp.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| 3 | resfifsupp.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 4 | funrel | ⊢ ( Fun 𝐹 → Rel 𝐹 ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → Rel 𝐹 ) |
| 6 | resindm | ⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( 𝑋 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝑋 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑋 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝑋 ) ) |
| 8 | 1 | funfnd | ⊢ ( 𝜑 → 𝐹 Fn dom 𝐹 ) |
| 9 | fnresin2 | ⊢ ( 𝐹 Fn dom 𝐹 → ( 𝐹 ↾ ( 𝑋 ∩ dom 𝐹 ) ) Fn ( 𝑋 ∩ dom 𝐹 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑋 ∩ dom 𝐹 ) ) Fn ( 𝑋 ∩ dom 𝐹 ) ) |
| 11 | infi | ⊢ ( 𝑋 ∈ Fin → ( 𝑋 ∩ dom 𝐹 ) ∈ Fin ) | |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → ( 𝑋 ∩ dom 𝐹 ) ∈ Fin ) |
| 13 | 10 12 3 | fndmfifsupp | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑋 ∩ dom 𝐹 ) ) finSupp 𝑍 ) |
| 14 | 7 13 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑋 ) finSupp 𝑍 ) |