This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fndmfisuppfi.f | ⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) | |
| fndmfisuppfi.d | ⊢ ( 𝜑 → 𝐷 ∈ Fin ) | ||
| fndmfisuppfi.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| Assertion | fndmfifsupp | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmfisuppfi.f | ⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) | |
| 2 | fndmfisuppfi.d | ⊢ ( 𝜑 → 𝐷 ∈ Fin ) | |
| 3 | fndmfisuppfi.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 4 | dffn3 | ⊢ ( 𝐹 Fn 𝐷 ↔ 𝐹 : 𝐷 ⟶ ran 𝐹 ) | |
| 5 | 1 4 | sylib | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ran 𝐹 ) |
| 6 | 5 2 3 | fdmfifsupp | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |