This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resfifsupp.f | |- ( ph -> Fun F ) |
|
| resfifsupp.x | |- ( ph -> X e. Fin ) |
||
| resfifsupp.z | |- ( ph -> Z e. V ) |
||
| Assertion | resfifsupp | |- ( ph -> ( F |` X ) finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfifsupp.f | |- ( ph -> Fun F ) |
|
| 2 | resfifsupp.x | |- ( ph -> X e. Fin ) |
|
| 3 | resfifsupp.z | |- ( ph -> Z e. V ) |
|
| 4 | funrel | |- ( Fun F -> Rel F ) |
|
| 5 | 1 4 | syl | |- ( ph -> Rel F ) |
| 6 | resindm | |- ( Rel F -> ( F |` ( X i^i dom F ) ) = ( F |` X ) ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( F |` ( X i^i dom F ) ) = ( F |` X ) ) |
| 8 | 1 | funfnd | |- ( ph -> F Fn dom F ) |
| 9 | fnresin2 | |- ( F Fn dom F -> ( F |` ( X i^i dom F ) ) Fn ( X i^i dom F ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( F |` ( X i^i dom F ) ) Fn ( X i^i dom F ) ) |
| 11 | infi | |- ( X e. Fin -> ( X i^i dom F ) e. Fin ) |
|
| 12 | 2 11 | syl | |- ( ph -> ( X i^i dom F ) e. Fin ) |
| 13 | 10 12 3 | fndmfifsupp | |- ( ph -> ( F |` ( X i^i dom F ) ) finSupp Z ) |
| 14 | 7 13 | eqbrtrrd | |- ( ph -> ( F |` X ) finSupp Z ) |