This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resdmdfsn | ⊢ ( Rel 𝑅 → ( 𝑅 ↾ ( V ∖ { 𝑋 } ) ) = ( 𝑅 ↾ ( dom 𝑅 ∖ { 𝑋 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resindm | ⊢ ( Rel 𝑅 → ( 𝑅 ↾ ( ( V ∖ { 𝑋 } ) ∩ dom 𝑅 ) ) = ( 𝑅 ↾ ( V ∖ { 𝑋 } ) ) ) | |
| 2 | indif1 | ⊢ ( ( V ∖ { 𝑋 } ) ∩ dom 𝑅 ) = ( ( V ∩ dom 𝑅 ) ∖ { 𝑋 } ) | |
| 3 | incom | ⊢ ( V ∩ dom 𝑅 ) = ( dom 𝑅 ∩ V ) | |
| 4 | inv1 | ⊢ ( dom 𝑅 ∩ V ) = dom 𝑅 | |
| 5 | 3 4 | eqtri | ⊢ ( V ∩ dom 𝑅 ) = dom 𝑅 |
| 6 | 5 | difeq1i | ⊢ ( ( V ∩ dom 𝑅 ) ∖ { 𝑋 } ) = ( dom 𝑅 ∖ { 𝑋 } ) |
| 7 | 2 6 | eqtri | ⊢ ( ( V ∖ { 𝑋 } ) ∩ dom 𝑅 ) = ( dom 𝑅 ∖ { 𝑋 } ) |
| 8 | 7 | reseq2i | ⊢ ( 𝑅 ↾ ( ( V ∖ { 𝑋 } ) ∩ dom 𝑅 ) ) = ( 𝑅 ↾ ( dom 𝑅 ∖ { 𝑋 } ) ) |
| 9 | 1 8 | eqtr3di | ⊢ ( Rel 𝑅 → ( 𝑅 ↾ ( V ∖ { 𝑋 } ) ) = ( 𝑅 ↾ ( dom 𝑅 ∖ { 𝑋 } ) ) ) |