This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a relation into two disjoint parts based on its domain. (Contributed by Thierry Arnoux, 9-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldisjun | ⊢ ( ( Rel 𝑅 ∧ dom 𝑅 = ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝑅 = ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑅 ↾ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 | ⊢ ( dom 𝑅 = ( 𝐴 ∪ 𝐵 ) → ( 𝑅 ↾ dom 𝑅 ) = ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 2 | 1 | 3ad2ant2 | ⊢ ( ( Rel 𝑅 ∧ dom 𝑅 = ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑅 ↾ dom 𝑅 ) = ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) ) |
| 3 | resdm | ⊢ ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( Rel 𝑅 ∧ dom 𝑅 = ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) |
| 5 | resundi | ⊢ ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑅 ↾ 𝐵 ) ) | |
| 6 | 5 | a1i | ⊢ ( ( Rel 𝑅 ∧ dom 𝑅 = ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑅 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑅 ↾ 𝐵 ) ) ) |
| 7 | 2 4 6 | 3eqtr3d | ⊢ ( ( Rel 𝑅 ∧ dom 𝑅 = ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝑅 = ( ( 𝑅 ↾ 𝐴 ) ∪ ( 𝑅 ↾ 𝐵 ) ) ) |