This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the restriction of a category to a given set of arrows. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-resc | ⊢ ↾cat = ( 𝑐 ∈ V , ℎ ∈ V ↦ ( ( 𝑐 ↾s dom dom ℎ ) sSet 〈 ( Hom ‘ ndx ) , ℎ 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cresc | ⊢ ↾cat | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | cvv | ⊢ V | |
| 3 | vh | ⊢ ℎ | |
| 4 | 1 | cv | ⊢ 𝑐 |
| 5 | cress | ⊢ ↾s | |
| 6 | 3 | cv | ⊢ ℎ |
| 7 | 6 | cdm | ⊢ dom ℎ |
| 8 | 7 | cdm | ⊢ dom dom ℎ |
| 9 | 4 8 5 | co | ⊢ ( 𝑐 ↾s dom dom ℎ ) |
| 10 | csts | ⊢ sSet | |
| 11 | chom | ⊢ Hom | |
| 12 | cnx | ⊢ ndx | |
| 13 | 12 11 | cfv | ⊢ ( Hom ‘ ndx ) |
| 14 | 13 6 | cop | ⊢ 〈 ( Hom ‘ ndx ) , ℎ 〉 |
| 15 | 9 14 10 | co | ⊢ ( ( 𝑐 ↾s dom dom ℎ ) sSet 〈 ( Hom ‘ ndx ) , ℎ 〉 ) |
| 16 | 1 3 2 2 15 | cmpo | ⊢ ( 𝑐 ∈ V , ℎ ∈ V ↦ ( ( 𝑐 ↾s dom dom ℎ ) sSet 〈 ( Hom ‘ ndx ) , ℎ 〉 ) ) |
| 17 | 0 16 | wceq | ⊢ ↾cat = ( 𝑐 ∈ V , ℎ ∈ V ↦ ( ( 𝑐 ↾s dom dom ℎ ) sSet 〈 ( Hom ‘ ndx ) , ℎ 〉 ) ) |