This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A faithful functor into a restricted category is also a faithful functor into the whole category. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fthres2 | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) ⊆ ( 𝐶 Faith 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfth | ⊢ Rel ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) | |
| 2 | 1 | a1i | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → Rel ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) ) |
| 3 | funcres2 | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) ⊆ ( 𝐶 Func 𝐷 ) ) | |
| 4 | 3 | ssbrd | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 → 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ) ) |
| 5 | 4 | anim1d | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( ( 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) → ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | 6 | isfth | ⊢ ( 𝑓 ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ↔ ( 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
| 8 | 6 | isfth | ⊢ ( 𝑓 ( 𝐶 Faith 𝐷 ) 𝑔 ↔ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
| 9 | 5 7 8 | 3imtr4g | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 𝑓 ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) 𝑔 → 𝑓 ( 𝐶 Faith 𝐷 ) 𝑔 ) ) |
| 10 | df-br | ⊢ ( 𝑓 ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ↔ 〈 𝑓 , 𝑔 〉 ∈ ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) ) | |
| 11 | df-br | ⊢ ( 𝑓 ( 𝐶 Faith 𝐷 ) 𝑔 ↔ 〈 𝑓 , 𝑔 〉 ∈ ( 𝐶 Faith 𝐷 ) ) | |
| 12 | 9 10 11 | 3imtr3g | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 〈 𝑓 , 𝑔 〉 ∈ ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) → 〈 𝑓 , 𝑔 〉 ∈ ( 𝐶 Faith 𝐷 ) ) ) |
| 13 | 2 12 | relssdv | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) ⊆ ( 𝐶 Faith 𝐷 ) ) |