This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repsco | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑆 repeatS 𝑁 ) ) = ( ( 𝐹 ‘ 𝑆 ) repeatS 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 ∈ 𝐴 ) | |
| 2 | simpl2 | ⊢ ( ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) | |
| 3 | simpr | ⊢ ( ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → 𝑥 ∈ ( 0 ..^ 𝑁 ) ) | |
| 4 | repswsymb | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑥 ) = 𝑆 ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑥 ) = 𝑆 ) |
| 6 | 5 | fveq2d | ⊢ ( ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ‘ ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑆 ) ) |
| 7 | 6 | mpteq2dva | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐹 ‘ ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐹 ‘ 𝑆 ) ) ) |
| 8 | simp3 | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 9 | repsf | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) : ( 0 ..^ 𝑁 ) ⟶ 𝐴 ) | |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑆 repeatS 𝑁 ) : ( 0 ..^ 𝑁 ) ⟶ 𝐴 ) |
| 11 | fcompt | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑆 repeatS 𝑁 ) : ( 0 ..^ 𝑁 ) ⟶ 𝐴 ) → ( 𝐹 ∘ ( 𝑆 repeatS 𝑁 ) ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐹 ‘ ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑥 ) ) ) ) | |
| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑆 repeatS 𝑁 ) ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐹 ‘ ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑥 ) ) ) ) |
| 13 | fvexd | ⊢ ( 𝑆 ∈ 𝐴 → ( 𝐹 ‘ 𝑆 ) ∈ V ) | |
| 14 | 13 | anim1i | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑆 ) ∈ V ∧ 𝑁 ∈ ℕ0 ) ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ‘ 𝑆 ) ∈ V ∧ 𝑁 ∈ ℕ0 ) ) |
| 16 | reps | ⊢ ( ( ( 𝐹 ‘ 𝑆 ) ∈ V ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑆 ) repeatS 𝑁 ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐹 ‘ 𝑆 ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ‘ 𝑆 ) repeatS 𝑁 ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝐹 ‘ 𝑆 ) ) ) |
| 18 | 7 12 17 | 3eqtr4d | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑆 repeatS 𝑁 ) ) = ( ( 𝐹 ‘ 𝑆 ) repeatS 𝑁 ) ) |