This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repsco | |- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( F o. ( S repeatS N ) ) = ( ( F ` S ) repeatS N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( S e. A /\ N e. NN0 /\ F : A --> B ) /\ x e. ( 0 ..^ N ) ) -> S e. A ) |
|
| 2 | simpl2 | |- ( ( ( S e. A /\ N e. NN0 /\ F : A --> B ) /\ x e. ( 0 ..^ N ) ) -> N e. NN0 ) |
|
| 3 | simpr | |- ( ( ( S e. A /\ N e. NN0 /\ F : A --> B ) /\ x e. ( 0 ..^ N ) ) -> x e. ( 0 ..^ N ) ) |
|
| 4 | repswsymb | |- ( ( S e. A /\ N e. NN0 /\ x e. ( 0 ..^ N ) ) -> ( ( S repeatS N ) ` x ) = S ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ( ( S e. A /\ N e. NN0 /\ F : A --> B ) /\ x e. ( 0 ..^ N ) ) -> ( ( S repeatS N ) ` x ) = S ) |
| 6 | 5 | fveq2d | |- ( ( ( S e. A /\ N e. NN0 /\ F : A --> B ) /\ x e. ( 0 ..^ N ) ) -> ( F ` ( ( S repeatS N ) ` x ) ) = ( F ` S ) ) |
| 7 | 6 | mpteq2dva | |- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( x e. ( 0 ..^ N ) |-> ( F ` ( ( S repeatS N ) ` x ) ) ) = ( x e. ( 0 ..^ N ) |-> ( F ` S ) ) ) |
| 8 | simp3 | |- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> F : A --> B ) |
|
| 9 | repsf | |- ( ( S e. A /\ N e. NN0 ) -> ( S repeatS N ) : ( 0 ..^ N ) --> A ) |
|
| 10 | 9 | 3adant3 | |- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( S repeatS N ) : ( 0 ..^ N ) --> A ) |
| 11 | fcompt | |- ( ( F : A --> B /\ ( S repeatS N ) : ( 0 ..^ N ) --> A ) -> ( F o. ( S repeatS N ) ) = ( x e. ( 0 ..^ N ) |-> ( F ` ( ( S repeatS N ) ` x ) ) ) ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( F o. ( S repeatS N ) ) = ( x e. ( 0 ..^ N ) |-> ( F ` ( ( S repeatS N ) ` x ) ) ) ) |
| 13 | fvexd | |- ( S e. A -> ( F ` S ) e. _V ) |
|
| 14 | 13 | anim1i | |- ( ( S e. A /\ N e. NN0 ) -> ( ( F ` S ) e. _V /\ N e. NN0 ) ) |
| 15 | 14 | 3adant3 | |- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( ( F ` S ) e. _V /\ N e. NN0 ) ) |
| 16 | reps | |- ( ( ( F ` S ) e. _V /\ N e. NN0 ) -> ( ( F ` S ) repeatS N ) = ( x e. ( 0 ..^ N ) |-> ( F ` S ) ) ) |
|
| 17 | 15 16 | syl | |- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( ( F ` S ) repeatS N ) = ( x e. ( 0 ..^ N ) |-> ( F ` S ) ) ) |
| 18 | 7 12 17 | 3eqtr4d | |- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( F o. ( S repeatS N ) ) = ( ( F ` S ) repeatS N ) ) |