This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repsf | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 ∈ 𝑉 ) | |
| 2 | 1 | ralrimiva | ⊢ ( 𝑆 ∈ 𝑉 → ∀ 𝑥 ∈ ( 0 ..^ 𝑁 ) 𝑆 ∈ 𝑉 ) |
| 3 | 2 | adantr | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ∀ 𝑥 ∈ ( 0 ..^ 𝑁 ) 𝑆 ∈ 𝑉 ) |
| 4 | eqid | ⊢ ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) | |
| 5 | 4 | fmpt | ⊢ ( ∀ 𝑥 ∈ ( 0 ..^ 𝑁 ) 𝑆 ∈ 𝑉 ↔ ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) |
| 6 | 3 5 | sylib | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) |
| 7 | reps | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) ) | |
| 8 | 7 | feq1d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑆 repeatS 𝑁 ) : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ↔ ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) ) |
| 9 | 6 8 | mpbird | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) |