This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An at-most-singleton is a relation iff it is empty (because it is a "singleton on a proper class") or it is a singleton of an ordered pair. (Contributed by BJ, 26-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relsnb | ⊢ ( Rel { 𝐴 } ↔ ( ¬ 𝐴 ∈ V ∨ 𝐴 ∈ ( V × V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsng | ⊢ ( 𝐴 ∈ V → ( Rel { 𝐴 } ↔ 𝐴 ∈ ( V × V ) ) ) | |
| 2 | 1 | biimpcd | ⊢ ( Rel { 𝐴 } → ( 𝐴 ∈ V → 𝐴 ∈ ( V × V ) ) ) |
| 3 | imor | ⊢ ( ( 𝐴 ∈ V → 𝐴 ∈ ( V × V ) ) ↔ ( ¬ 𝐴 ∈ V ∨ 𝐴 ∈ ( V × V ) ) ) | |
| 4 | 2 3 | sylib | ⊢ ( Rel { 𝐴 } → ( ¬ 𝐴 ∈ V ∨ 𝐴 ∈ ( V × V ) ) ) |
| 5 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 6 | rel0 | ⊢ Rel ∅ | |
| 7 | releq | ⊢ ( { 𝐴 } = ∅ → ( Rel { 𝐴 } ↔ Rel ∅ ) ) | |
| 8 | 6 7 | mpbiri | ⊢ ( { 𝐴 } = ∅ → Rel { 𝐴 } ) |
| 9 | 5 8 | sylbi | ⊢ ( ¬ 𝐴 ∈ V → Rel { 𝐴 } ) |
| 10 | relsng | ⊢ ( 𝐴 ∈ ( V × V ) → ( Rel { 𝐴 } ↔ 𝐴 ∈ ( V × V ) ) ) | |
| 11 | 10 | ibir | ⊢ ( 𝐴 ∈ ( V × V ) → Rel { 𝐴 } ) |
| 12 | 9 11 | jaoi | ⊢ ( ( ¬ 𝐴 ∈ V ∨ 𝐴 ∈ ( V × V ) ) → Rel { 𝐴 } ) |
| 13 | 4 12 | impbii | ⊢ ( Rel { 𝐴 } ↔ ( ¬ 𝐴 ∈ V ∨ 𝐴 ∈ ( V × V ) ) ) |