This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An at-most-singleton is a relation iff it is empty (because it is a "singleton on a proper class") or it is a singleton of an ordered pair. (Contributed by BJ, 26-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relsnb | |- ( Rel { A } <-> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsng | |- ( A e. _V -> ( Rel { A } <-> A e. ( _V X. _V ) ) ) |
|
| 2 | 1 | biimpcd | |- ( Rel { A } -> ( A e. _V -> A e. ( _V X. _V ) ) ) |
| 3 | imor | |- ( ( A e. _V -> A e. ( _V X. _V ) ) <-> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) |
|
| 4 | 2 3 | sylib | |- ( Rel { A } -> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) |
| 5 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 6 | rel0 | |- Rel (/) |
|
| 7 | releq | |- ( { A } = (/) -> ( Rel { A } <-> Rel (/) ) ) |
|
| 8 | 6 7 | mpbiri | |- ( { A } = (/) -> Rel { A } ) |
| 9 | 5 8 | sylbi | |- ( -. A e. _V -> Rel { A } ) |
| 10 | relsng | |- ( A e. ( _V X. _V ) -> ( Rel { A } <-> A e. ( _V X. _V ) ) ) |
|
| 11 | 10 | ibir | |- ( A e. ( _V X. _V ) -> Rel { A } ) |
| 12 | 9 11 | jaoi | |- ( ( -. A e. _V \/ A e. ( _V X. _V ) ) -> Rel { A } ) |
| 13 | 4 12 | impbii | |- ( Rel { A } <-> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) |