This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An at-most-singleton is a relation iff it is empty (because it is a "singleton on a proper class") or it is a singleton of an ordered pair. (Contributed by BJ, 26-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relsnb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsng | ||
| 2 | 1 | biimpcd | |
| 3 | imor | ||
| 4 | 2 3 | sylib | |
| 5 | snprc | ||
| 6 | rel0 | ||
| 7 | releq | ||
| 8 | 6 7 | mpbiri | |
| 9 | 5 8 | sylbi | |
| 10 | relsng | ||
| 11 | 10 | ibir | |
| 12 | 9 11 | jaoi | |
| 13 | 4 12 | impbii |