This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton is a relation iff it is a singleton on an ordered pair. (Contributed by NM, 24-Sep-2013) (Revised by BJ, 12-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relsng | ⊢ ( 𝐴 ∈ 𝑉 → ( Rel { 𝐴 } ↔ 𝐴 ∈ ( V × V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel | ⊢ ( Rel { 𝐴 } ↔ { 𝐴 } ⊆ ( V × V ) ) | |
| 2 | snssg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ( V × V ) ↔ { 𝐴 } ⊆ ( V × V ) ) ) | |
| 3 | 1 2 | bitr4id | ⊢ ( 𝐴 ∈ 𝑉 → ( Rel { 𝐴 } ↔ 𝐴 ∈ ( V × V ) ) ) |