This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An interval law for less than or equal. (Contributed by Scott Fenton, 27-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relin01 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∨ 1 ≤ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | letric | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐴 ≤ 1 ∨ 1 ≤ 𝐴 ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 1 ∨ 1 ≤ 𝐴 ) ) |
| 4 | 0re | ⊢ 0 ∈ ℝ | |
| 5 | letric | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 ≤ 0 ∨ 0 ≤ 𝐴 ) ) | |
| 6 | 4 5 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ∨ 0 ≤ 𝐴 ) ) |
| 7 | pm3.21 | ⊢ ( 𝐴 ≤ 1 → ( 0 ≤ 𝐴 → ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) | |
| 8 | 7 | orim2d | ⊢ ( 𝐴 ≤ 1 → ( ( 𝐴 ≤ 0 ∨ 0 ≤ 𝐴 ) → ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) ) |
| 9 | 6 8 | syl5com | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 1 → ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) ) |
| 10 | 9 | orim1d | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ≤ 1 ∨ 1 ≤ 𝐴 ) → ( ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ∨ 1 ≤ 𝐴 ) ) ) |
| 11 | 3 10 | mpd | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ∨ 1 ≤ 𝐴 ) ) |
| 12 | df-3or | ⊢ ( ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∨ 1 ≤ 𝐴 ) ↔ ( ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ∨ 1 ≤ 𝐴 ) ) | |
| 13 | 11 12 | sylibr | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∨ 1 ≤ 𝐴 ) ) |