This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releldm2 | ⊢ ( Rel 𝐴 → ( 𝐵 ∈ dom 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐵 ∈ dom 𝐴 → 𝐵 ∈ V ) | |
| 2 | 1 | anim2i | ⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ dom 𝐴 ) → ( Rel 𝐴 ∧ 𝐵 ∈ V ) ) |
| 3 | id | ⊢ ( ( 1st ‘ 𝑥 ) = 𝐵 → ( 1st ‘ 𝑥 ) = 𝐵 ) | |
| 4 | fvex | ⊢ ( 1st ‘ 𝑥 ) ∈ V | |
| 5 | 3 4 | eqeltrrdi | ⊢ ( ( 1st ‘ 𝑥 ) = 𝐵 → 𝐵 ∈ V ) |
| 6 | 5 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 → 𝐵 ∈ V ) |
| 7 | 6 | anim2i | ⊢ ( ( Rel 𝐴 ∧ ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ) → ( Rel 𝐴 ∧ 𝐵 ∈ V ) ) |
| 8 | eldm2g | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ dom 𝐴 ↔ ∃ 𝑦 〈 𝐵 , 𝑦 〉 ∈ 𝐴 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ V ) → ( 𝐵 ∈ dom 𝐴 ↔ ∃ 𝑦 〈 𝐵 , 𝑦 〉 ∈ 𝐴 ) ) |
| 10 | df-rel | ⊢ ( Rel 𝐴 ↔ 𝐴 ⊆ ( V × V ) ) | |
| 11 | ssel | ⊢ ( 𝐴 ⊆ ( V × V ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( V × V ) ) ) | |
| 12 | 10 11 | sylbi | ⊢ ( Rel 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( V × V ) ) ) |
| 13 | 12 | imp | ⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( V × V ) ) |
| 14 | op1steq | ⊢ ( 𝑥 ∈ ( V × V ) → ( ( 1st ‘ 𝑥 ) = 𝐵 ↔ ∃ 𝑦 𝑥 = 〈 𝐵 , 𝑦 〉 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 1st ‘ 𝑥 ) = 𝐵 ↔ ∃ 𝑦 𝑥 = 〈 𝐵 , 𝑦 〉 ) ) |
| 16 | 15 | rexbidva | ⊢ ( Rel 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 = 〈 𝐵 , 𝑦 〉 ) ) |
| 17 | 16 | adantr | ⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ V ) → ( ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 = 〈 𝐵 , 𝑦 〉 ) ) |
| 18 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 = 〈 𝐵 , 𝑦 〉 ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑥 = 〈 𝐵 , 𝑦 〉 ) | |
| 19 | risset | ⊢ ( 〈 𝐵 , 𝑦 〉 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 = 〈 𝐵 , 𝑦 〉 ) | |
| 20 | 19 | exbii | ⊢ ( ∃ 𝑦 〈 𝐵 , 𝑦 〉 ∈ 𝐴 ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 𝑥 = 〈 𝐵 , 𝑦 〉 ) |
| 21 | 18 20 | bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 = 〈 𝐵 , 𝑦 〉 ↔ ∃ 𝑦 〈 𝐵 , 𝑦 〉 ∈ 𝐴 ) |
| 22 | 17 21 | bitrdi | ⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ V ) → ( ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ↔ ∃ 𝑦 〈 𝐵 , 𝑦 〉 ∈ 𝐴 ) ) |
| 23 | 9 22 | bitr4d | ⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ V ) → ( 𝐵 ∈ dom 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ) ) |
| 24 | 2 7 23 | pm5.21nd | ⊢ ( Rel 𝐴 → ( 𝐵 ∈ dom 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ( 1st ‘ 𝑥 ) = 𝐵 ) ) |