This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a relation into two disjoint parts based on its domain. (Contributed by Thierry Arnoux, 9-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldisjun | |- ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> R = ( ( R |` A ) u. ( R |` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 | |- ( dom R = ( A u. B ) -> ( R |` dom R ) = ( R |` ( A u. B ) ) ) |
|
| 2 | 1 | 3ad2ant2 | |- ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> ( R |` dom R ) = ( R |` ( A u. B ) ) ) |
| 3 | resdm | |- ( Rel R -> ( R |` dom R ) = R ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> ( R |` dom R ) = R ) |
| 5 | resundi | |- ( R |` ( A u. B ) ) = ( ( R |` A ) u. ( R |` B ) ) |
|
| 6 | 5 | a1i | |- ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> ( R |` ( A u. B ) ) = ( ( R |` A ) u. ( R |` B ) ) ) |
| 7 | 2 4 6 | 3eqtr3d | |- ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> R = ( ( R |` A ) u. ( R |` B ) ) ) |