This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is antisymmetric. (Contributed by Peter Mazsa, 11-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | antisymressn | ⊢ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brressn | ⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) ) | |
| 2 | 1 | el2v | ⊢ ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) |
| 3 | 2 | simplbi | ⊢ ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 → 𝑥 = 𝐴 ) |
| 4 | brressn | ⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ↔ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑥 ) ) ) | |
| 5 | 4 | el2v | ⊢ ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ↔ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑥 ) ) |
| 6 | 5 | simplbi | ⊢ ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 → 𝑦 = 𝐴 ) |
| 7 | eqtr3 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) → 𝑥 = 𝑦 ) | |
| 8 | 3 6 7 | syl2an | ⊢ ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 ) |
| 9 | 8 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 ) |