This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rbropapd.1 | ⊢ ( 𝜑 → 𝑀 = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ 𝜓 ) } ) | |
| rbropapd.2 | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | rbropapd | ⊢ ( 𝜑 → ( ( 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌 ) → ( 𝐹 𝑀 𝑃 ↔ ( 𝐹 𝑊 𝑃 ∧ 𝜒 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rbropapd.1 | ⊢ ( 𝜑 → 𝑀 = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ 𝜓 ) } ) | |
| 2 | rbropapd.2 | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | df-br | ⊢ ( 𝐹 𝑀 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ 𝑀 ) | |
| 4 | 1 | eleq2d | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝑃 〉 ∈ 𝑀 ↔ 〈 𝐹 , 𝑃 〉 ∈ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ 𝜓 ) } ) ) |
| 5 | 3 4 | bitrid | ⊢ ( 𝜑 → ( 𝐹 𝑀 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ 𝜓 ) } ) ) |
| 6 | breq12 | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑓 𝑊 𝑝 ↔ 𝐹 𝑊 𝑃 ) ) | |
| 7 | 6 2 | anbi12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝑓 𝑊 𝑝 ∧ 𝜓 ) ↔ ( 𝐹 𝑊 𝑃 ∧ 𝜒 ) ) ) |
| 8 | 7 | opelopabga | ⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌 ) → ( 〈 𝐹 , 𝑃 〉 ∈ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ 𝜓 ) } ↔ ( 𝐹 𝑊 𝑃 ∧ 𝜒 ) ) ) |
| 9 | 5 8 | sylan9bb | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌 ) ) → ( 𝐹 𝑀 𝑃 ↔ ( 𝐹 𝑊 𝑃 ∧ 𝜒 ) ) ) |
| 10 | 9 | ex | ⊢ ( 𝜑 → ( ( 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌 ) → ( 𝐹 𝑀 𝑃 ↔ ( 𝐹 𝑊 𝑃 ∧ 𝜒 ) ) ) ) |