This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rbropapd.1 | |- ( ph -> M = { <. f , p >. | ( f W p /\ ps ) } ) |
|
| rbropapd.2 | |- ( ( f = F /\ p = P ) -> ( ps <-> ch ) ) |
||
| Assertion | rbropapd | |- ( ph -> ( ( F e. X /\ P e. Y ) -> ( F M P <-> ( F W P /\ ch ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rbropapd.1 | |- ( ph -> M = { <. f , p >. | ( f W p /\ ps ) } ) |
|
| 2 | rbropapd.2 | |- ( ( f = F /\ p = P ) -> ( ps <-> ch ) ) |
|
| 3 | df-br | |- ( F M P <-> <. F , P >. e. M ) |
|
| 4 | 1 | eleq2d | |- ( ph -> ( <. F , P >. e. M <-> <. F , P >. e. { <. f , p >. | ( f W p /\ ps ) } ) ) |
| 5 | 3 4 | bitrid | |- ( ph -> ( F M P <-> <. F , P >. e. { <. f , p >. | ( f W p /\ ps ) } ) ) |
| 6 | breq12 | |- ( ( f = F /\ p = P ) -> ( f W p <-> F W P ) ) |
|
| 7 | 6 2 | anbi12d | |- ( ( f = F /\ p = P ) -> ( ( f W p /\ ps ) <-> ( F W P /\ ch ) ) ) |
| 8 | 7 | opelopabga | |- ( ( F e. X /\ P e. Y ) -> ( <. F , P >. e. { <. f , p >. | ( f W p /\ ps ) } <-> ( F W P /\ ch ) ) ) |
| 9 | 5 8 | sylan9bb | |- ( ( ph /\ ( F e. X /\ P e. Y ) ) -> ( F M P <-> ( F W P /\ ch ) ) ) |
| 10 | 9 | ex | |- ( ph -> ( ( F e. X /\ P e. Y ) -> ( F M P <-> ( F W P /\ ch ) ) ) ) |