This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankxpl.1 | |- A e. _V |
|
| rankxpl.2 | |- B e. _V |
||
| Assertion | rankxpu | |- ( rank ` ( A X. B ) ) C_ suc suc ( rank ` ( A u. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankxpl.1 | |- A e. _V |
|
| 2 | rankxpl.2 | |- B e. _V |
|
| 3 | xpsspw | |- ( A X. B ) C_ ~P ~P ( A u. B ) |
|
| 4 | 1 2 | unex | |- ( A u. B ) e. _V |
| 5 | 4 | pwex | |- ~P ( A u. B ) e. _V |
| 6 | 5 | pwex | |- ~P ~P ( A u. B ) e. _V |
| 7 | 6 | rankss | |- ( ( A X. B ) C_ ~P ~P ( A u. B ) -> ( rank ` ( A X. B ) ) C_ ( rank ` ~P ~P ( A u. B ) ) ) |
| 8 | 3 7 | ax-mp | |- ( rank ` ( A X. B ) ) C_ ( rank ` ~P ~P ( A u. B ) ) |
| 9 | 5 | rankpw | |- ( rank ` ~P ~P ( A u. B ) ) = suc ( rank ` ~P ( A u. B ) ) |
| 10 | 4 | rankpw | |- ( rank ` ~P ( A u. B ) ) = suc ( rank ` ( A u. B ) ) |
| 11 | suceq | |- ( ( rank ` ~P ( A u. B ) ) = suc ( rank ` ( A u. B ) ) -> suc ( rank ` ~P ( A u. B ) ) = suc suc ( rank ` ( A u. B ) ) ) |
|
| 12 | 10 11 | ax-mp | |- suc ( rank ` ~P ( A u. B ) ) = suc suc ( rank ` ( A u. B ) ) |
| 13 | 9 12 | eqtri | |- ( rank ` ~P ~P ( A u. B ) ) = suc suc ( rank ` ( A u. B ) ) |
| 14 | 8 13 | sseqtri | |- ( rank ` ( A X. B ) ) C_ suc suc ( rank ` ( A u. B ) ) |