This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the rank of a Cartesian product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankxplim.1 | ⊢ 𝐴 ∈ V | |
| rankxplim.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | rankxplim2 | ⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankxplim.1 | ⊢ 𝐴 ∈ V | |
| 2 | rankxplim.2 | ⊢ 𝐵 ∈ V | |
| 3 | 0ellim | ⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → ∅ ∈ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) | |
| 4 | n0i | ⊢ ( ∅ ∈ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) | |
| 5 | 3 4 | syl | ⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 6 | df-ne | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ¬ ( 𝐴 × 𝐵 ) = ∅ ) | |
| 7 | 1 2 | xpex | ⊢ ( 𝐴 × 𝐵 ) ∈ V |
| 8 | 7 | rankeq0 | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 9 | 8 | notbii | ⊢ ( ¬ ( 𝐴 × 𝐵 ) = ∅ ↔ ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 10 | 6 9 | bitr2i | ⊢ ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 11 | 5 10 | sylib | ⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 12 | limuni2 | ⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) | |
| 13 | limuni2 | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 15 | rankuni | ⊢ ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) = ∪ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) | |
| 16 | rankuni | ⊢ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) = ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) | |
| 17 | 16 | unieqi | ⊢ ∪ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) = ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) |
| 18 | 15 17 | eqtr2i | ⊢ ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) |
| 19 | unixp | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ∪ ∪ ( 𝐴 × 𝐵 ) = ( 𝐴 ∪ 𝐵 ) ) | |
| 20 | 19 | fveq2d | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 21 | 18 20 | eqtrid | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 22 | limeq | ⊢ ( ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) → ( Lim ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( Lim ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 24 | 14 23 | imbitrid | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 25 | 11 24 | mpcom | ⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |