This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a successor. (Contributed by NM, 18-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankr1b.1 | ⊢ 𝐴 ∈ V | |
| Assertion | ranksuc | ⊢ ( rank ‘ suc 𝐴 ) = suc ( rank ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1b.1 | ⊢ 𝐴 ∈ V | |
| 2 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 3 | 2 | fveq2i | ⊢ ( rank ‘ suc 𝐴 ) = ( rank ‘ ( 𝐴 ∪ { 𝐴 } ) ) |
| 4 | snex | ⊢ { 𝐴 } ∈ V | |
| 5 | 1 4 | rankun | ⊢ ( rank ‘ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐴 } ) ) |
| 6 | 1 | ranksn | ⊢ ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) |
| 7 | 6 | uneq2i | ⊢ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐴 } ) ) = ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐴 ) ) |
| 8 | sssucid | ⊢ ( rank ‘ 𝐴 ) ⊆ suc ( rank ‘ 𝐴 ) | |
| 9 | ssequn1 | ⊢ ( ( rank ‘ 𝐴 ) ⊆ suc ( rank ‘ 𝐴 ) ↔ ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐴 ) ) = suc ( rank ‘ 𝐴 ) ) | |
| 10 | 8 9 | mpbi | ⊢ ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐴 ) ) = suc ( rank ‘ 𝐴 ) |
| 11 | 7 10 | eqtri | ⊢ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐴 } ) ) = suc ( rank ‘ 𝐴 ) |
| 12 | 5 11 | eqtri | ⊢ ( rank ‘ ( 𝐴 ∪ { 𝐴 } ) ) = suc ( rank ‘ 𝐴 ) |
| 13 | 3 12 | eqtri | ⊢ ( rank ‘ suc 𝐴 ) = suc ( rank ‘ 𝐴 ) |