This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a successor. (Contributed by NM, 18-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankr1b.1 | |- A e. _V |
|
| Assertion | ranksuc | |- ( rank ` suc A ) = suc ( rank ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1b.1 | |- A e. _V |
|
| 2 | df-suc | |- suc A = ( A u. { A } ) |
|
| 3 | 2 | fveq2i | |- ( rank ` suc A ) = ( rank ` ( A u. { A } ) ) |
| 4 | snex | |- { A } e. _V |
|
| 5 | 1 4 | rankun | |- ( rank ` ( A u. { A } ) ) = ( ( rank ` A ) u. ( rank ` { A } ) ) |
| 6 | 1 | ranksn | |- ( rank ` { A } ) = suc ( rank ` A ) |
| 7 | 6 | uneq2i | |- ( ( rank ` A ) u. ( rank ` { A } ) ) = ( ( rank ` A ) u. suc ( rank ` A ) ) |
| 8 | sssucid | |- ( rank ` A ) C_ suc ( rank ` A ) |
|
| 9 | ssequn1 | |- ( ( rank ` A ) C_ suc ( rank ` A ) <-> ( ( rank ` A ) u. suc ( rank ` A ) ) = suc ( rank ` A ) ) |
|
| 10 | 8 9 | mpbi | |- ( ( rank ` A ) u. suc ( rank ` A ) ) = suc ( rank ` A ) |
| 11 | 7 10 | eqtri | |- ( ( rank ` A ) u. ( rank ` { A } ) ) = suc ( rank ` A ) |
| 12 | 5 11 | eqtri | |- ( rank ` ( A u. { A } ) ) = suc ( rank ` A ) |
| 13 | 3 12 | eqtri | |- ( rank ` suc A ) = suc ( rank ` A ) |