This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankr1b.1 | |- A e. _V |
|
| Assertion | rankc2 | |- ( E. x e. A ( rank ` x ) = ( rank ` U. A ) -> ( rank ` A ) = suc ( rank ` U. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1b.1 | |- A e. _V |
|
| 2 | pwuni | |- A C_ ~P U. A |
|
| 3 | 1 | uniex | |- U. A e. _V |
| 4 | 3 | pwex | |- ~P U. A e. _V |
| 5 | 4 | rankss | |- ( A C_ ~P U. A -> ( rank ` A ) C_ ( rank ` ~P U. A ) ) |
| 6 | 2 5 | ax-mp | |- ( rank ` A ) C_ ( rank ` ~P U. A ) |
| 7 | 3 | rankpw | |- ( rank ` ~P U. A ) = suc ( rank ` U. A ) |
| 8 | 6 7 | sseqtri | |- ( rank ` A ) C_ suc ( rank ` U. A ) |
| 9 | 8 | a1i | |- ( E. x e. A ( rank ` x ) = ( rank ` U. A ) -> ( rank ` A ) C_ suc ( rank ` U. A ) ) |
| 10 | 1 | rankel | |- ( x e. A -> ( rank ` x ) e. ( rank ` A ) ) |
| 11 | eleq1 | |- ( ( rank ` x ) = ( rank ` U. A ) -> ( ( rank ` x ) e. ( rank ` A ) <-> ( rank ` U. A ) e. ( rank ` A ) ) ) |
|
| 12 | 10 11 | syl5ibcom | |- ( x e. A -> ( ( rank ` x ) = ( rank ` U. A ) -> ( rank ` U. A ) e. ( rank ` A ) ) ) |
| 13 | 12 | rexlimiv | |- ( E. x e. A ( rank ` x ) = ( rank ` U. A ) -> ( rank ` U. A ) e. ( rank ` A ) ) |
| 14 | rankon | |- ( rank ` U. A ) e. On |
|
| 15 | rankon | |- ( rank ` A ) e. On |
|
| 16 | 14 15 | onsucssi | |- ( ( rank ` U. A ) e. ( rank ` A ) <-> suc ( rank ` U. A ) C_ ( rank ` A ) ) |
| 17 | 13 16 | sylib | |- ( E. x e. A ( rank ` x ) = ( rank ` U. A ) -> suc ( rank ` U. A ) C_ ( rank ` A ) ) |
| 18 | 9 17 | eqssd | |- ( E. x e. A ( rank ` x ) = ( rank ` U. A ) -> ( rank ` A ) = suc ( rank ` U. A ) ) |