This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexraleqim.1 | ⊢ ( 𝑥 = 𝑧 → ( 𝜓 ↔ 𝜑 ) ) | |
| rexraleqim.2 | ⊢ ( 𝑧 = 𝑌 → ( 𝜑 ↔ 𝜃 ) ) | ||
| Assertion | rexraleqim | ⊢ ( ( ∃ 𝑧 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑌 ) ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexraleqim.1 | ⊢ ( 𝑥 = 𝑧 → ( 𝜓 ↔ 𝜑 ) ) | |
| 2 | rexraleqim.2 | ⊢ ( 𝑧 = 𝑌 → ( 𝜑 ↔ 𝜃 ) ) | |
| 3 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑌 ↔ 𝑧 = 𝑌 ) ) | |
| 4 | 1 3 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝜓 → 𝑥 = 𝑌 ) ↔ ( 𝜑 → 𝑧 = 𝑌 ) ) ) |
| 5 | 4 | rspcva | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑌 ) ) → ( 𝜑 → 𝑧 = 𝑌 ) ) |
| 6 | 2 | biimpd | ⊢ ( 𝑧 = 𝑌 → ( 𝜑 → 𝜃 ) ) |
| 7 | 5 6 | syli | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑌 ) ) → ( 𝜑 → 𝜃 ) ) |
| 8 | 7 | impancom | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝜑 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑌 ) → 𝜃 ) ) |
| 9 | 8 | rexlimiva | ⊢ ( ∃ 𝑧 ∈ 𝐴 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑌 ) → 𝜃 ) ) |
| 10 | 9 | imp | ⊢ ( ( ∃ 𝑧 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑌 ) ) → 𝜃 ) |