This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula-building rule for restricted existential quantifier, using a restricted universal quantifier to bind the quantified variable in the antecedent. (Contributed by AV, 21-Oct-2023) Reduce axiom usage. (Revised by SN, 13-Nov-2023) (Proof shortened by Wolf Lammen, 4-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralrexbid.1 | |- ( ph -> ( ps <-> th ) ) |
|
| Assertion | ralrexbid | |- ( A. x e. A ph -> ( E. x e. A ps <-> E. x e. A th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrexbid.1 | |- ( ph -> ( ps <-> th ) ) |
|
| 2 | 1 | ralimi | |- ( A. x e. A ph -> A. x e. A ( ps <-> th ) ) |
| 3 | rexbi | |- ( A. x e. A ( ps <-> th ) -> ( E. x e. A ps <-> E. x e. A th ) ) |
|
| 4 | 2 3 | syl | |- ( A. x e. A ph -> ( E. x e. A ps <-> E. x e. A th ) ) |