This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute restricted quantification over a biconditional. (Contributed by Scott Fenton, 7-Aug-2024) (Proof shortened by Wolf Lammen, 3-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 3 | rexim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 5 | biimpr | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) | |
| 6 | 5 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) |
| 7 | rexim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 9 | 4 8 | impbid | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |