This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raaan.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| raaan.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| Assertion | raaan | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raaan.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | raaan.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | rzal | ⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) | |
| 4 | rzal | ⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 𝜑 ) | |
| 5 | rzal | ⊢ ( 𝐴 = ∅ → ∀ 𝑦 ∈ 𝐴 𝜓 ) | |
| 6 | pm5.1 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) | |
| 7 | 3 4 5 6 | syl12anc | ⊢ ( 𝐴 = ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
| 8 | 1 | r19.28z | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
| 10 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 11 | 10 2 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 𝜓 |
| 12 | 11 | r19.27z | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
| 13 | 9 12 | bitrd | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
| 14 | 7 13 | pm2.61ine | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) |