This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a restricted class abstraction to be a subset of a singleton, i.e. to be a singleton or the empty set. (Contributed by AV, 18-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabsssn | ⊢ ( { 𝑥 ∈ 𝑉 ∣ 𝜑 } ⊆ { 𝑋 } ↔ ∀ 𝑥 ∈ 𝑉 ( 𝜑 → 𝑥 = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ 𝑉 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } | |
| 2 | df-sn | ⊢ { 𝑋 } = { 𝑥 ∣ 𝑥 = 𝑋 } | |
| 3 | 1 2 | sseq12i | ⊢ ( { 𝑥 ∈ 𝑉 ∣ 𝜑 } ⊆ { 𝑋 } ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ 𝑥 = 𝑋 } ) |
| 4 | ss2ab | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ 𝑥 = 𝑋 } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) → 𝑥 = 𝑋 ) ) | |
| 5 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) → 𝑥 = 𝑋 ) ↔ ( 𝑥 ∈ 𝑉 → ( 𝜑 → 𝑥 = 𝑋 ) ) ) | |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) → 𝑥 = 𝑋 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ( 𝜑 → 𝑥 = 𝑋 ) ) ) |
| 7 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝑉 ( 𝜑 → 𝑥 = 𝑋 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ( 𝜑 → 𝑥 = 𝑋 ) ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) → 𝑥 = 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝜑 → 𝑥 = 𝑋 ) ) |
| 9 | 3 4 8 | 3bitri | ⊢ ( { 𝑥 ∈ 𝑉 ∣ 𝜑 } ⊆ { 𝑋 } ↔ ∀ 𝑥 ∈ 𝑉 ( 𝜑 → 𝑥 = 𝑋 ) ) |