This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a restricted class abstraction to be a subset of a singleton, i.e. to be a singleton or the empty set. (Contributed by AV, 18-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabsssn | |- ( { x e. V | ph } C_ { X } <-> A. x e. V ( ph -> x = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. V | ph } = { x | ( x e. V /\ ph ) } |
|
| 2 | df-sn | |- { X } = { x | x = X } |
|
| 3 | 1 2 | sseq12i | |- ( { x e. V | ph } C_ { X } <-> { x | ( x e. V /\ ph ) } C_ { x | x = X } ) |
| 4 | ss2ab | |- ( { x | ( x e. V /\ ph ) } C_ { x | x = X } <-> A. x ( ( x e. V /\ ph ) -> x = X ) ) |
|
| 5 | impexp | |- ( ( ( x e. V /\ ph ) -> x = X ) <-> ( x e. V -> ( ph -> x = X ) ) ) |
|
| 6 | 5 | albii | |- ( A. x ( ( x e. V /\ ph ) -> x = X ) <-> A. x ( x e. V -> ( ph -> x = X ) ) ) |
| 7 | df-ral | |- ( A. x e. V ( ph -> x = X ) <-> A. x ( x e. V -> ( ph -> x = X ) ) ) |
|
| 8 | 6 7 | bitr4i | |- ( A. x ( ( x e. V /\ ph ) -> x = X ) <-> A. x e. V ( ph -> x = X ) ) |
| 9 | 3 4 8 | 3bitri | |- ( { x e. V | ph } C_ { X } <-> A. x e. V ( ph -> x = X ) ) |