This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a restricted class abstraction to be a singleton, in deduction form. (Contributed by Thierry Arnoux, 2-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabeqsnd.0 | ⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| rabeqsnd.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| rabeqsnd.2 | ⊢ ( 𝜑 → 𝜒 ) | ||
| rabeqsnd.3 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝑥 = 𝐵 ) | ||
| Assertion | rabeqsnd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqsnd.0 | ⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | rabeqsnd.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | rabeqsnd.2 | ⊢ ( 𝜑 → 𝜒 ) | |
| 4 | rabeqsnd.3 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝑥 = 𝐵 ) | |
| 5 | 4 | expl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝐵 ) ) |
| 6 | 5 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝐵 ) ) |
| 7 | 2 3 | jca | ⊢ ( 𝜑 → ( 𝐵 ∈ 𝐴 ∧ 𝜒 ) ) |
| 8 | 7 | a1d | ⊢ ( 𝜑 → ( 𝑥 = 𝐵 → ( 𝐵 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 9 | 8 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝐵 → ( 𝐵 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 10 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 11 | 10 1 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 12 | 11 | pm5.74i | ⊢ ( ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ( 𝑥 = 𝐵 → ( 𝐵 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 13 | 12 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑥 ( 𝑥 = 𝐵 → ( 𝐵 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 14 | 9 13 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 15 | 6 14 | jca | ⊢ ( 𝜑 → ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝐵 ) ∧ ∀ 𝑥 ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
| 16 | albiim | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ 𝑥 = 𝐵 ) ↔ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝐵 ) ∧ ∀ 𝑥 ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) ) | |
| 17 | 15 16 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ 𝑥 = 𝐵 ) ) |
| 18 | rabeqsn | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝐵 } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ 𝑥 = 𝐵 ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝐵 } ) |