This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abstract builder restricted to another restricted abstract builder with implicit substitution. (Contributed by AV, 2-Aug-2022) Avoid ax-10 , ax-11 and ax-12 . (Revised by GG, 12-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabrabi.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜒 ↔ 𝜑 ) ) | |
| Assertion | rabrabi | ⊢ { 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ ( 𝜒 ∧ 𝜓 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabrabi.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜒 ↔ 𝜑 ) ) | |
| 2 | df-rab | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } | |
| 3 | 2 | eleq2i | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } ) |
| 4 | df-clab | ⊢ ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } ↔ [ 𝑥 / 𝑦 ] ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 5 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 6 | 1 | bicomd | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
| 7 | 6 | equcoms | ⊢ ( 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜒 ) ) |
| 8 | 5 7 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 9 | 8 | sbievw | ⊢ ( [ 𝑥 / 𝑦 ] ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) |
| 10 | 3 4 9 | 3bitri | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) |
| 11 | 10 | anbi1i | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜓 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ∧ 𝜓 ) ) |
| 12 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜒 ∧ 𝜓 ) ) ) | |
| 13 | 11 12 | bitri | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜒 ∧ 𝜓 ) ) ) |
| 14 | 13 | rabbia2 | ⊢ { 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ ( 𝜒 ∧ 𝜓 ) } |