This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abstract builder restricted to another restricted abstract builder with implicit substitution. (Contributed by AV, 2-Aug-2022) Avoid ax-10 , ax-11 and ax-12 . (Revised by GG, 12-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabrabi.1 | |- ( x = y -> ( ch <-> ph ) ) |
|
| Assertion | rabrabi | |- { x e. { y e. A | ph } | ps } = { x e. A | ( ch /\ ps ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabrabi.1 | |- ( x = y -> ( ch <-> ph ) ) |
|
| 2 | df-rab | |- { y e. A | ph } = { y | ( y e. A /\ ph ) } |
|
| 3 | 2 | eleq2i | |- ( x e. { y e. A | ph } <-> x e. { y | ( y e. A /\ ph ) } ) |
| 4 | df-clab | |- ( x e. { y | ( y e. A /\ ph ) } <-> [ x / y ] ( y e. A /\ ph ) ) |
|
| 5 | eleq1w | |- ( y = x -> ( y e. A <-> x e. A ) ) |
|
| 6 | 1 | bicomd | |- ( x = y -> ( ph <-> ch ) ) |
| 7 | 6 | equcoms | |- ( y = x -> ( ph <-> ch ) ) |
| 8 | 5 7 | anbi12d | |- ( y = x -> ( ( y e. A /\ ph ) <-> ( x e. A /\ ch ) ) ) |
| 9 | 8 | sbievw | |- ( [ x / y ] ( y e. A /\ ph ) <-> ( x e. A /\ ch ) ) |
| 10 | 3 4 9 | 3bitri | |- ( x e. { y e. A | ph } <-> ( x e. A /\ ch ) ) |
| 11 | 10 | anbi1i | |- ( ( x e. { y e. A | ph } /\ ps ) <-> ( ( x e. A /\ ch ) /\ ps ) ) |
| 12 | anass | |- ( ( ( x e. A /\ ch ) /\ ps ) <-> ( x e. A /\ ( ch /\ ps ) ) ) |
|
| 13 | 11 12 | bitri | |- ( ( x e. { y e. A | ph } /\ ps ) <-> ( x e. A /\ ( ch /\ ps ) ) ) |
| 14 | 13 | rabbia2 | |- { x e. { y e. A | ph } | ps } = { x e. A | ( ch /\ ps ) } |