This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a restricted class abstraction to be a singleton, in deduction form. (Contributed by Thierry Arnoux, 2-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabeqsnd.0 | ||
| rabeqsnd.1 | |||
| rabeqsnd.2 | |||
| rabeqsnd.3 | |||
| Assertion | rabeqsnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqsnd.0 | ||
| 2 | rabeqsnd.1 | ||
| 3 | rabeqsnd.2 | ||
| 4 | rabeqsnd.3 | ||
| 5 | 4 | expl | |
| 6 | 5 | alrimiv | |
| 7 | 2 3 | jca | |
| 8 | 7 | a1d | |
| 9 | 8 | alrimiv | |
| 10 | eleq1 | ||
| 11 | 10 1 | anbi12d | |
| 12 | 11 | pm5.74i | |
| 13 | 12 | albii | |
| 14 | 9 13 | sylibr | |
| 15 | 6 14 | jca | |
| 16 | albiim | ||
| 17 | 15 16 | sylibr | |
| 18 | rabeqsn | ||
| 19 | 17 18 | sylibr |