This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of Monk1 p. 113. (Contributed by NM, 30-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1val3 | ⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1fnon | ⊢ 𝑅1 Fn On | |
| 2 | 1 | fndmi | ⊢ dom 𝑅1 = On |
| 3 | 2 | eleq2i | ⊢ ( 𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On ) |
| 4 | r1val1 | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 5 | 3 4 | sylbir | ⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 6 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) | |
| 7 | r1val2 | ⊢ ( 𝑥 ∈ On → ( 𝑅1 ‘ 𝑥 ) = { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) = { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
| 9 | 8 | pweqd | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → 𝒫 ( 𝑅1 ‘ 𝑥 ) = 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
| 10 | 9 | iuneq2dv | ⊢ ( 𝐴 ∈ On → ∪ 𝑥 ∈ 𝐴 𝒫 ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑥 ∈ 𝐴 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |
| 11 | 5 10 | eqtrd | ⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 𝒫 { 𝑦 ∣ ( rank ‘ 𝑦 ) ∈ 𝑥 } ) |