This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of Monk1 p. 113. (Contributed by NM, 30-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1val3 | |- ( A e. On -> ( R1 ` A ) = U_ x e. A ~P { y | ( rank ` y ) e. x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1fnon | |- R1 Fn On |
|
| 2 | 1 | fndmi | |- dom R1 = On |
| 3 | 2 | eleq2i | |- ( A e. dom R1 <-> A e. On ) |
| 4 | r1val1 | |- ( A e. dom R1 -> ( R1 ` A ) = U_ x e. A ~P ( R1 ` x ) ) |
|
| 5 | 3 4 | sylbir | |- ( A e. On -> ( R1 ` A ) = U_ x e. A ~P ( R1 ` x ) ) |
| 6 | onelon | |- ( ( A e. On /\ x e. A ) -> x e. On ) |
|
| 7 | r1val2 | |- ( x e. On -> ( R1 ` x ) = { y | ( rank ` y ) e. x } ) |
|
| 8 | 6 7 | syl | |- ( ( A e. On /\ x e. A ) -> ( R1 ` x ) = { y | ( rank ` y ) e. x } ) |
| 9 | 8 | pweqd | |- ( ( A e. On /\ x e. A ) -> ~P ( R1 ` x ) = ~P { y | ( rank ` y ) e. x } ) |
| 10 | 9 | iuneq2dv | |- ( A e. On -> U_ x e. A ~P ( R1 ` x ) = U_ x e. A ~P { y | ( rank ` y ) e. x } ) |
| 11 | 5 10 | eqtrd | |- ( A e. On -> ( R1 ` A ) = U_ x e. A ~P { y | ( rank ` y ) e. x } ) |