This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem r19.3rzv

Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997) Avoid ax-12 . (Revised by TM, 16-Feb-2026)

Ref Expression
Assertion r19.3rzv A φ x A φ

Proof

Step Hyp Ref Expression
1 ax-1 φ x A φ
2 1 ralrimiv φ x A φ
3 rspn0 A x A φ φ
4 2 3 impbid2 A φ x A φ