This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.21t ; closed form of r19.21 . (Contributed by NM, 1-Mar-2008) (Proof shortened by Wolf Lammen, 2-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.21t | ⊢ ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21t | ⊢ ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) | |
| 3 | bi2.04 | ⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ↔ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) ) | |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ↔ ∀ 𝑥 ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) ) |
| 5 | 2 4 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) ) |
| 6 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) | |
| 7 | 6 | imbi2i | ⊢ ( ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) ) |
| 8 | 1 5 7 | 3bitr4g | ⊢ ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |