This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.21t ; closed form of r19.21 . (Contributed by NM, 1-Mar-2008) (Proof shortened by Wolf Lammen, 2-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.21t | |- ( F/ x ph -> ( A. x e. A ( ph -> ps ) <-> ( ph -> A. x e. A ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21t | |- ( F/ x ph -> ( A. x ( ph -> ( x e. A -> ps ) ) <-> ( ph -> A. x ( x e. A -> ps ) ) ) ) |
|
| 2 | df-ral | |- ( A. x e. A ( ph -> ps ) <-> A. x ( x e. A -> ( ph -> ps ) ) ) |
|
| 3 | bi2.04 | |- ( ( x e. A -> ( ph -> ps ) ) <-> ( ph -> ( x e. A -> ps ) ) ) |
|
| 4 | 3 | albii | |- ( A. x ( x e. A -> ( ph -> ps ) ) <-> A. x ( ph -> ( x e. A -> ps ) ) ) |
| 5 | 2 4 | bitri | |- ( A. x e. A ( ph -> ps ) <-> A. x ( ph -> ( x e. A -> ps ) ) ) |
| 6 | df-ral | |- ( A. x e. A ps <-> A. x ( x e. A -> ps ) ) |
|
| 7 | 6 | imbi2i | |- ( ( ph -> A. x e. A ps ) <-> ( ph -> A. x ( x e. A -> ps ) ) ) |
| 8 | 1 5 7 | 3bitr4g | |- ( F/ x ph -> ( A. x e. A ( ph -> ps ) <-> ( ph -> A. x e. A ps ) ) ) |