This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
r19.12sn
Metamath Proof Explorer
Description: Special case of r19.12 where its converse holds. (Contributed by NM , 19-May-2008) (Revised by Mario Carneiro , 23-Apr-2015) (Revised by BJ , 18-Mar-2020)
Ref
Expression
Assertion
r19.12sn
⊢ A ∈ V → ∃ x ∈ A ∀ y ∈ B φ ↔ ∀ y ∈ B ∃ x ∈ A φ
Proof
Step
Hyp
Ref
Expression
1
sbcralg
⊢ A ∈ V → [ ˙ A / x ] ˙ ∀ y ∈ B φ ↔ ∀ y ∈ B [ ˙ A / x ] ˙ φ
2
rexsns
⊢ ∃ x ∈ A ∀ y ∈ B φ ↔ [ ˙ A / x ] ˙ ∀ y ∈ B φ
3
rexsns
⊢ ∃ x ∈ A φ ↔ [ ˙ A / x ] ˙ φ
4
3
ralbii
⊢ ∀ y ∈ B ∃ x ∈ A φ ↔ ∀ y ∈ B [ ˙ A / x ] ˙ φ
5
1 2 4
3bitr4g
⊢ A ∈ V → ∃ x ∈ A ∀ y ∈ B φ ↔ ∀ y ∈ B ∃ x ∈ A φ