This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of r19.12 where its converse holds. (Contributed by NM, 19-May-2008) (Revised by Mario Carneiro, 23-Apr-2015) (Revised by BJ, 18-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.12sn | |- ( A e. V -> ( E. x e. { A } A. y e. B ph <-> A. y e. B E. x e. { A } ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcralg | |- ( A e. V -> ( [. A / x ]. A. y e. B ph <-> A. y e. B [. A / x ]. ph ) ) |
|
| 2 | rexsns | |- ( E. x e. { A } A. y e. B ph <-> [. A / x ]. A. y e. B ph ) |
|
| 3 | rexsns | |- ( E. x e. { A } ph <-> [. A / x ]. ph ) |
|
| 4 | 3 | ralbii | |- ( A. y e. B E. x e. { A } ph <-> A. y e. B [. A / x ]. ph ) |
| 5 | 1 2 4 | 3bitr4g | |- ( A e. V -> ( E. x e. { A } A. y e. B ph <-> A. y e. B E. x e. { A } ph ) ) |