This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for qtopcmp and qtopconn . (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qtopcmp.1 | |- X = U. J |
|
| qtopcmplem.1 | |- ( J e. A -> J e. Top ) |
||
| qtopcmplem.2 | |- ( ( J e. A /\ F : X -onto-> U. ( J qTop F ) /\ F e. ( J Cn ( J qTop F ) ) ) -> ( J qTop F ) e. A ) |
||
| Assertion | qtopcmplem | |- ( ( J e. A /\ F Fn X ) -> ( J qTop F ) e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopcmp.1 | |- X = U. J |
|
| 2 | qtopcmplem.1 | |- ( J e. A -> J e. Top ) |
|
| 3 | qtopcmplem.2 | |- ( ( J e. A /\ F : X -onto-> U. ( J qTop F ) /\ F e. ( J Cn ( J qTop F ) ) ) -> ( J qTop F ) e. A ) |
|
| 4 | simpl | |- ( ( J e. A /\ F Fn X ) -> J e. A ) |
|
| 5 | simpr | |- ( ( J e. A /\ F Fn X ) -> F Fn X ) |
|
| 6 | dffn4 | |- ( F Fn X <-> F : X -onto-> ran F ) |
|
| 7 | 5 6 | sylib | |- ( ( J e. A /\ F Fn X ) -> F : X -onto-> ran F ) |
| 8 | 1 | qtopuni | |- ( ( J e. Top /\ F : X -onto-> ran F ) -> ran F = U. ( J qTop F ) ) |
| 9 | 2 8 | sylan | |- ( ( J e. A /\ F : X -onto-> ran F ) -> ran F = U. ( J qTop F ) ) |
| 10 | 6 9 | sylan2b | |- ( ( J e. A /\ F Fn X ) -> ran F = U. ( J qTop F ) ) |
| 11 | foeq3 | |- ( ran F = U. ( J qTop F ) -> ( F : X -onto-> ran F <-> F : X -onto-> U. ( J qTop F ) ) ) |
|
| 12 | 10 11 | syl | |- ( ( J e. A /\ F Fn X ) -> ( F : X -onto-> ran F <-> F : X -onto-> U. ( J qTop F ) ) ) |
| 13 | 7 12 | mpbid | |- ( ( J e. A /\ F Fn X ) -> F : X -onto-> U. ( J qTop F ) ) |
| 14 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 15 | 2 14 | sylib | |- ( J e. A -> J e. ( TopOn ` X ) ) |
| 16 | qtopid | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |
|
| 17 | 15 16 | sylan | |- ( ( J e. A /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |
| 18 | 4 13 17 3 | syl3anc | |- ( ( J e. A /\ F Fn X ) -> ( J qTop F ) e. A ) |