This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopbas.1 | ⊢ 𝑆 ⊆ ℝ* | |
| Assertion | qtopbaslem | ⊢ ( (,) “ ( 𝑆 × 𝑆 ) ) ∈ TopBases |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopbas.1 | ⊢ 𝑆 ⊆ ℝ* | |
| 2 | iooex | ⊢ (,) ∈ V | |
| 3 | 2 | imaex | ⊢ ( (,) “ ( 𝑆 × 𝑆 ) ) ∈ V |
| 4 | 1 | sseli | ⊢ ( 𝑧 ∈ 𝑆 → 𝑧 ∈ ℝ* ) |
| 5 | 1 | sseli | ⊢ ( 𝑤 ∈ 𝑆 → 𝑤 ∈ ℝ* ) |
| 6 | 4 5 | anim12i | ⊢ ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( 𝑧 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ) |
| 7 | 1 | sseli | ⊢ ( 𝑣 ∈ 𝑆 → 𝑣 ∈ ℝ* ) |
| 8 | 1 | sseli | ⊢ ( 𝑢 ∈ 𝑆 → 𝑢 ∈ ℝ* ) |
| 9 | 7 8 | anim12i | ⊢ ( ( 𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) → ( 𝑣 ∈ ℝ* ∧ 𝑢 ∈ ℝ* ) ) |
| 10 | iooin | ⊢ ( ( ( 𝑧 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ∧ ( 𝑣 ∈ ℝ* ∧ 𝑢 ∈ ℝ* ) ) → ( ( 𝑧 (,) 𝑤 ) ∩ ( 𝑣 (,) 𝑢 ) ) = ( if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) (,) if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) ) ) | |
| 11 | 6 9 10 | syl2an | ⊢ ( ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑧 (,) 𝑤 ) ∩ ( 𝑣 (,) 𝑢 ) ) = ( if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) (,) if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) ) ) |
| 12 | ifcl | ⊢ ( ( 𝑣 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) ∈ 𝑆 ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝑧 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) ∈ 𝑆 ) |
| 14 | ifcl | ⊢ ( ( 𝑤 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) → if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) ∈ 𝑆 ) | |
| 15 | df-ov | ⊢ ( if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) (,) if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) ) = ( (,) ‘ 〈 if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) , if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) 〉 ) | |
| 16 | opelxpi | ⊢ ( ( if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) ∈ 𝑆 ∧ if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) ∈ 𝑆 ) → 〈 if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) , if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) 〉 ∈ ( 𝑆 × 𝑆 ) ) | |
| 17 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 18 | ffun | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → Fun (,) ) | |
| 19 | 17 18 | ax-mp | ⊢ Fun (,) |
| 20 | xpss12 | ⊢ ( ( 𝑆 ⊆ ℝ* ∧ 𝑆 ⊆ ℝ* ) → ( 𝑆 × 𝑆 ) ⊆ ( ℝ* × ℝ* ) ) | |
| 21 | 1 1 20 | mp2an | ⊢ ( 𝑆 × 𝑆 ) ⊆ ( ℝ* × ℝ* ) |
| 22 | 17 | fdmi | ⊢ dom (,) = ( ℝ* × ℝ* ) |
| 23 | 21 22 | sseqtrri | ⊢ ( 𝑆 × 𝑆 ) ⊆ dom (,) |
| 24 | funfvima2 | ⊢ ( ( Fun (,) ∧ ( 𝑆 × 𝑆 ) ⊆ dom (,) ) → ( 〈 if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) , if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) 〉 ∈ ( 𝑆 × 𝑆 ) → ( (,) ‘ 〈 if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) , if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) 〉 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) ) | |
| 25 | 19 23 24 | mp2an | ⊢ ( 〈 if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) , if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) 〉 ∈ ( 𝑆 × 𝑆 ) → ( (,) ‘ 〈 if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) , if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) 〉 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 26 | 16 25 | syl | ⊢ ( ( if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) ∈ 𝑆 ∧ if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) ∈ 𝑆 ) → ( (,) ‘ 〈 if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) , if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) 〉 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 27 | 15 26 | eqeltrid | ⊢ ( ( if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) ∈ 𝑆 ∧ if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) ∈ 𝑆 ) → ( if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) (,) if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 28 | 13 14 27 | syl2an | ⊢ ( ( ( 𝑧 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑤 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ) → ( if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) (,) if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 29 | 28 | an4s | ⊢ ( ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ) → ( if ( 𝑧 ≤ 𝑣 , 𝑣 , 𝑧 ) (,) if ( 𝑤 ≤ 𝑢 , 𝑤 , 𝑢 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 30 | 11 29 | eqeltrd | ⊢ ( ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ ( 𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑧 (,) 𝑤 ) ∩ ( 𝑣 (,) 𝑢 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 31 | 30 | ralrimivva | ⊢ ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ∀ 𝑣 ∈ 𝑆 ∀ 𝑢 ∈ 𝑆 ( ( 𝑧 (,) 𝑤 ) ∩ ( 𝑣 (,) 𝑢 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 32 | 31 | rgen2 | ⊢ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ∀ 𝑢 ∈ 𝑆 ( ( 𝑧 (,) 𝑤 ) ∩ ( 𝑣 (,) 𝑢 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) |
| 33 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 34 | 17 33 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 35 | ineq1 | ⊢ ( 𝑥 = ( (,) ‘ 𝑡 ) → ( 𝑥 ∩ 𝑦 ) = ( ( (,) ‘ 𝑡 ) ∩ 𝑦 ) ) | |
| 36 | 35 | eleq1d | ⊢ ( 𝑥 = ( (,) ‘ 𝑡 ) → ( ( 𝑥 ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ( ( (,) ‘ 𝑡 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) ) |
| 37 | 36 | ralbidv | ⊢ ( 𝑥 = ( (,) ‘ 𝑡 ) → ( ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( 𝑥 ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( ( (,) ‘ 𝑡 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) ) |
| 38 | 37 | ralima | ⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ ( 𝑆 × 𝑆 ) ⊆ ( ℝ* × ℝ* ) ) → ( ∀ 𝑥 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( 𝑥 ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ∀ 𝑡 ∈ ( 𝑆 × 𝑆 ) ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( ( (,) ‘ 𝑡 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) ) |
| 39 | 34 21 38 | mp2an | ⊢ ( ∀ 𝑥 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( 𝑥 ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ∀ 𝑡 ∈ ( 𝑆 × 𝑆 ) ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( ( (,) ‘ 𝑡 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 40 | fveq2 | ⊢ ( 𝑡 = 〈 𝑧 , 𝑤 〉 → ( (,) ‘ 𝑡 ) = ( (,) ‘ 〈 𝑧 , 𝑤 〉 ) ) | |
| 41 | df-ov | ⊢ ( 𝑧 (,) 𝑤 ) = ( (,) ‘ 〈 𝑧 , 𝑤 〉 ) | |
| 42 | 40 41 | eqtr4di | ⊢ ( 𝑡 = 〈 𝑧 , 𝑤 〉 → ( (,) ‘ 𝑡 ) = ( 𝑧 (,) 𝑤 ) ) |
| 43 | 42 | ineq1d | ⊢ ( 𝑡 = 〈 𝑧 , 𝑤 〉 → ( ( (,) ‘ 𝑡 ) ∩ 𝑦 ) = ( ( 𝑧 (,) 𝑤 ) ∩ 𝑦 ) ) |
| 44 | 43 | eleq1d | ⊢ ( 𝑡 = 〈 𝑧 , 𝑤 〉 → ( ( ( (,) ‘ 𝑡 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ( ( 𝑧 (,) 𝑤 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) ) |
| 45 | 44 | ralbidv | ⊢ ( 𝑡 = 〈 𝑧 , 𝑤 〉 → ( ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( ( (,) ‘ 𝑡 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( ( 𝑧 (,) 𝑤 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) ) |
| 46 | ineq2 | ⊢ ( 𝑦 = ( (,) ‘ 𝑡 ) → ( ( 𝑧 (,) 𝑤 ) ∩ 𝑦 ) = ( ( 𝑧 (,) 𝑤 ) ∩ ( (,) ‘ 𝑡 ) ) ) | |
| 47 | 46 | eleq1d | ⊢ ( 𝑦 = ( (,) ‘ 𝑡 ) → ( ( ( 𝑧 (,) 𝑤 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ( ( 𝑧 (,) 𝑤 ) ∩ ( (,) ‘ 𝑡 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) ) |
| 48 | 47 | ralima | ⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ ( 𝑆 × 𝑆 ) ⊆ ( ℝ* × ℝ* ) ) → ( ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( ( 𝑧 (,) 𝑤 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ∀ 𝑡 ∈ ( 𝑆 × 𝑆 ) ( ( 𝑧 (,) 𝑤 ) ∩ ( (,) ‘ 𝑡 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) ) |
| 49 | 34 21 48 | mp2an | ⊢ ( ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( ( 𝑧 (,) 𝑤 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ∀ 𝑡 ∈ ( 𝑆 × 𝑆 ) ( ( 𝑧 (,) 𝑤 ) ∩ ( (,) ‘ 𝑡 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 50 | fveq2 | ⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ( (,) ‘ 𝑡 ) = ( (,) ‘ 〈 𝑣 , 𝑢 〉 ) ) | |
| 51 | df-ov | ⊢ ( 𝑣 (,) 𝑢 ) = ( (,) ‘ 〈 𝑣 , 𝑢 〉 ) | |
| 52 | 50 51 | eqtr4di | ⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ( (,) ‘ 𝑡 ) = ( 𝑣 (,) 𝑢 ) ) |
| 53 | 52 | ineq2d | ⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ( ( 𝑧 (,) 𝑤 ) ∩ ( (,) ‘ 𝑡 ) ) = ( ( 𝑧 (,) 𝑤 ) ∩ ( 𝑣 (,) 𝑢 ) ) ) |
| 54 | 53 | eleq1d | ⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ( ( ( 𝑧 (,) 𝑤 ) ∩ ( (,) ‘ 𝑡 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ( ( 𝑧 (,) 𝑤 ) ∩ ( 𝑣 (,) 𝑢 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) ) |
| 55 | 54 | ralxp | ⊢ ( ∀ 𝑡 ∈ ( 𝑆 × 𝑆 ) ( ( 𝑧 (,) 𝑤 ) ∩ ( (,) ‘ 𝑡 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ∀ 𝑣 ∈ 𝑆 ∀ 𝑢 ∈ 𝑆 ( ( 𝑧 (,) 𝑤 ) ∩ ( 𝑣 (,) 𝑢 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 56 | 49 55 | bitri | ⊢ ( ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( ( 𝑧 (,) 𝑤 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ∀ 𝑣 ∈ 𝑆 ∀ 𝑢 ∈ 𝑆 ( ( 𝑧 (,) 𝑤 ) ∩ ( 𝑣 (,) 𝑢 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 57 | 45 56 | bitrdi | ⊢ ( 𝑡 = 〈 𝑧 , 𝑤 〉 → ( ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( ( (,) ‘ 𝑡 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ∀ 𝑣 ∈ 𝑆 ∀ 𝑢 ∈ 𝑆 ( ( 𝑧 (,) 𝑤 ) ∩ ( 𝑣 (,) 𝑢 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) ) |
| 58 | 57 | ralxp | ⊢ ( ∀ 𝑡 ∈ ( 𝑆 × 𝑆 ) ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( ( (,) ‘ 𝑡 ) ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ∀ 𝑢 ∈ 𝑆 ( ( 𝑧 (,) 𝑤 ) ∩ ( 𝑣 (,) 𝑢 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 59 | 39 58 | bitri | ⊢ ( ∀ 𝑥 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( 𝑥 ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ↔ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ∀ 𝑢 ∈ 𝑆 ( ( 𝑧 (,) 𝑤 ) ∩ ( 𝑣 (,) 𝑢 ) ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) |
| 60 | 32 59 | mpbir | ⊢ ∀ 𝑥 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( 𝑥 ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) |
| 61 | fiinbas | ⊢ ( ( ( (,) “ ( 𝑆 × 𝑆 ) ) ∈ V ∧ ∀ 𝑥 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ∀ 𝑦 ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ( 𝑥 ∩ 𝑦 ) ∈ ( (,) “ ( 𝑆 × 𝑆 ) ) ) → ( (,) “ ( 𝑆 × 𝑆 ) ) ∈ TopBases ) | |
| 62 | 3 60 61 | mp2an | ⊢ ( (,) “ ( 𝑆 × 𝑆 ) ) ∈ TopBases |